

AFRL-IF-RS-TR-2004-237
Final Technical Report
August 2004

MODEL IDENTIFICATION AND OPTIMIZATION FOR
OPERATIONAL SIMULATION

Systems View

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2004-237 has been reviewed and is approved for publication

APPROVED: /s/

GARY A. PLOTZ
 Project Engineer

 FOR THE DIRECTOR: /s/
 JAMES W. CUSACK
 Chief, Information Systems Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
Aug 04

3. REPORT TYPE AND DATES COVERED
Final Mar 03 – Feb 04

4. TITLE AND SUBTITLE
MODEL IDENTIFICATION AND OPTIMIZATION FOR OPERATIONAL
SIMULATION

6. AUTHOR(S)
Douglas A. Popken and Louis A. Cox

5. FUNDING NUMBERS
C - F30602-03-C-0167
PE - 62702F
PR - 459S
TA - MA
WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Systems View
9139 Roadrunner St.
Highlands Ranch, CO 80129

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFSB
525 Brooks Road
Rome, NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-237

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Gary Plotz, IFSB, 315-330-4383, plotzg@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The purpose of this research effort was to develop and test frameworks and algorithms for use in air warfare planning
systems. Developing planning systems for this problem domain is particularly challenging due to their great complexity
and uncertainty. The effort focused on predictive simulation models for generating potential outcomes of proposed
operational plans. The planning process was organized as a hierarchy of decisions, with those at the top being
broadest and longest term. The algorithms at the highest level of planning use a hill-climbing approach, wherein
proposed “Blue” plans are evaluated, and the average marginal benefits of alternative force reallocations are computed.
Evaluation and measurement of each proposed Blue plan is accomplished via a “Stochastic Evaluator” that draws
multiple samples of potential outcomes and “Red” force levels for a given Blue force structure and a combined target
composition. The evaluation metric is the net discounted value from enemy targets hit. Within the evaluator, linear
programming and simulation generate optimized Red responses, assumed outcomes, and relative marginal force
values. This project successfully demonstrated automated plan optimization, practical embedding of optimization
algorithms into an operational planning cycle operating over a multi-period conflict, and use of hierarchical decision-
making to decomposed planning and on-line optimization problems into computationally practical tasks.

15. NUMBER OF PAGES
56

14. SUBJECT TERMS
Simulation, Optimization, Planning, Operational Simulation, Linear Programming,
Hierarchical Planning, Air Combat, Uncertainty 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

Table of Contents... i
List of Figures and Tables... ii
Summary ... 1

Problem Domain ... 3
Previous Research... 4

Methods, Assumptions, and Procedures ... 7
General Algorithm .. 7

Level 1: Allocating Forces to Roles... 7
Level 2: Assigning Forces to Targets .. 10

Level 1 Mathematical Programming Formulation.. 10
Discussion... 12

Attrition Rate Matrices ... 15
Fire-Attribution Method.. 16
Time-Over-Target Method.. 19
Level 1 Approximation ... 19

Update of AAF Target Values .. 21
Creating a Level 2 Plan... 22

Discussion... 24
Stochastic Simulator ... 25

Attrition Logic .. 26
Target Engagement Model.. 28

Results and Discussion ... 29
Database.. 29
Verification Testing .. 29
Performance Testing ... 29

Level 1 .. 30
Level 2 .. 31

Face Validity... 32
Level 1 .. 32
Level 2 .. 35

Statistical Comparisons between Planned and “Actual” Conflict .. 35
Appendix A: AFSimPlan Software.. 41

Overview... 41
User Guide .. 43

Level 1 Analysis ... 43
Level 2 Analysis ... 46

Appendix B: Domain Model.. 49
List of Symbols, Abbreviations, and Acronyms... 51

ii

List of Figures and Tables

Figure 1. Levels of Operational Planning for Air Warfare... 3
Figure 2. Optimization/Simulation Scheme to Generate T-Period Outcome 9
Figure 3. Allocation of Fire for Offensive Forces at Target Location A..................................... 17
Figure 4. Allocation of Fire for Defensive Forces at Target Location A 18
Figure 5. MATLAB Benchmark for the Test Machine ... 30
Figure 6. Net Blue Plan Value vs. Improving Iterations (Horizon Weight=0)............................ 33
Figure 7. Net Blue Plan Value vs. Improving Iterations (Horizon Weight = .50)........................ 34
Figure 8. Model Use during a Planning Cycle... 35

Table 1. Level 1 Performance Testing Summary .. 31
Table 2. Level 2 Performance and Face Validity Testing Summary.. 32
Table 3. Total Allocations By Role Over the Planning Horizon ... 32
Table 4. Value Extraction during a Conflict .. 36
Table 5. Discounted Net Blue Values Extracted with Varying Intelligence Quality 37

1

Summary

This research effort developed and tested frameworks and algorithms for use in air warfare
planning systems. It focused on the use of simulation models as predictive tools for generating
potential outcomes of proposed plans, and incorporating realistically high degrees of complexity
and uncertainty into optimization of plans.

In this effort, the planning process is organized as a hierarchy of decisions, as follows:

• The top-most level, “Force/Roles”, allocates forces across combat roles (Counter Air, Air
Defense, Target Reduction, AAF Suppression, and Other) for the remainder of the
planning horizon. This is the broadest, longest-term decision level.

• The next level down, “Targets/Missions”, assigns forces to specific targets and missions,
both offensive and defensive, in a given planning period.

• The third level, “Routes/Engagements”, assigns specific routes and engagements to
individual forces on an assigned mission.

• The bottom level, “Flight Control”, addresses real-time piloting, navigation, and fire
control.

This effort focused on developing and integrating the top two levels. The algorithms for the
Forces/Roles allocation function at the top level (Level 1 planning) use a stochastic gradient
(hill-climbing) approach to evaluate and improve upon proposed “Blue” plans using estimated
average marginal benefits of alternative force reallocations. The evaluation metric is the net
discounted value from hitting enemy targets. Plans are iteratively adjusted in the direction of
increasing estimated marginal benefits until no improving reallocations can be identified.

Each proposed Blue plan is evaluated with a “Stochastic Evaluator”. The evaluator repeatedly
samples from a probability distribution describing the (uncertain to Blue) Red force levels. For
each sample, the Stochastic Evaluator uses a succession of linear program based mathematical
models to determine an optimal Red response to the Blue plan, conditioned on the current
assumed Red force level. The mathematical models provide both the Red force allocation,
comparable to Blue’s current plan, as well as marginal relative resource values based on the
linear programming dual variables or “shadow prices”. For each period in the planning horizon,
a separate mathematical model will develop a Red response for the subsequent periods.
However, only the Red force allocation and dual variables relating to the first period of each
model are retained. In this rolling optimization approach, a multi-period look-ahead strategy is
used to plan future responses and to determine the best current (first-period) Red action. The
future portion of the plan is discarded as new information becomes available, and plans are re-
optimized in each period. Once the first-period decision has been determined, a single-period
probabilistic simulation model simulates an outcome for forces lost and targets damaged. The
surviving forces/targets become the assumed starting state for the next period, and the process is
repeated until all periods in the planning horizon have been evaluated. Finally, the results from
all of the samples are aggregated to generate a probability distribution of potential outcomes.

2

The algorithms for the Targets/Mission assignment function at the second level (Level 2
planning) similarly use a Stochastic Evaluator to generate a distribution of potential outcomes
conditioned on Red’s force levels. However, both base locations and the force quantities are
included in the more detailed Level 2 plan since mission targets are being identified, and combat
range becomes a factor. To generate specific Blue and Red target assignments as a function of
the Level 1 role allocations, a greedy heuristic was developed to assign target-hitting aircraft on
each side to the highest-value targets. Supporting forces for the target-hitting aircraft are then
sequentially assigned on each side to maximize the probability of mission success. The Level 2
assignment algorithms can be used in stand-alone mode, but are also integrated into the Level 1
analysis to generate the detailed force deployments used by the simulation model.

A battery of tests measured the performance and validity of the resulting algorithms on a test
dataset describing a notional Korean peninsula scenario. One set of tests demonstrated the
ability of the hill-climbing algorithm to generate significant improvements to initial Blue plans.
In other tests, plans with varying weights placed on survivability were generated by varying the
horizon weight parameter. Placing more weight on survival resulted in greater allocations to the
Air Defense role and away from the Target Reduction role. A final series of tests placed the
planning algorithms in a decision cycle, similar to how they would be used in practice. Each
cycle represented a period of a simulated conflict. Varying the maximum number of
improvements per cycle showed how the plan optimization process adds value during the
operational planning cycle. Poor intelligence on enemy forces demonstrably skewed the plan
away from desired goals. In all of the tests, run-time performance remains a concern. With
several minutes required to evaluate each plan, fully optimizing a plan over a 5-period planning
horizon requires many hours.

This project successfully demonstrated the use of an integrated hierarchical planning as a
framework for air warfare planning. It showed that linearized decision spaces can usefully
approximate problems that would otherwise be intractable due to size and uncertain dynamics.
Linear programming and simulation can operate in tandem over an extended planning horizon to
help generate high-level plans tuned to the objectives of the planners. Uncertainty was handled
by simulation and sampling. We showed how to automatically generate more detailed plans that
are consistent with top-level plans, and that that effective plan optimization algorithms can be
embedded in an operational planning cycle operating over a multi-period conflict.

3

Introduction

Problem Domain

Figure 1 outlines a hierarchical organization of military planning for air warfare, to be used as a
reference framework. The levels are briefly described below.

Flight Control

Routing/Engagements

Targets/Missions

Forces/
Roles

Figure 1. Levels of Operational Planning for Air Warfare

Level 1 - Assign Forces and Roles

The top level (Forces/Roles) sets force sizing and generic roles for different airframes over an
extended planning horizon, and over a wide battle area. Roles include Counter Air, Air Defense,
Target Reduction, and AAF Suppression. Many of the decisions at this level must be determined
well in advance of any conflict. In this sense, this level precedes and hence lies above real-time
operational planning. However, all military plans are subject to change once the conflict begins.
Emerging intelligence changes the perceived enemy status, and event sequences often unfold in
unexpected ways. It may become desirable to allocate more or fewer aircraft to their originally
planned roles as time passes. The planning horizon at this level may be on the order of days or
weeks to accommodate integration with overall war plans. Decisions from this level form an
overall strategy for the conflict.

Level 2 - Assign Missions

The next level (Targets/Missions) determines specific targets for specific aircraft in a given
attack wave. (For simplicity, flexibility and realism, air missions are organized into “waves” that
may occur at a rate such as one per day or three per day.) Targets are defined generically as
spatially localized tasks or activities to which air resources can be assigned. They may include
defense of friendly targets as well as destruction of enemy targets, and may denote regions,
weapon systems, or facilities. Thus, the different “roles” discussed above all are consistent with
the concept of target assignment. A target list with defined target values or priorities is the basis
of planning at this level. The planning horizon at this level is typically on the order of hours to

4

days to account for emerging targets and changing, frequently updated intelligence such as battle
damage assessment.

Level 3 - Schedule Routes and Engagements

The third level (Routing/Engagements) determines specific routes for aircraft to follow from
their base to their assigned targets and back. It can also determine what enemy forces should be
engaged en route to the final objectives (targets). At this point, decision-making is influenced by
the near real-time state of operations to include positions of specific enemy units. The planning
horizon at this level is on the order of minutes to hours to account for force locations.

Level 4 Flight Control

The lowest level (Flight Control) refers to real-time piloting, navigation, and fire control.
Decisions are on the level of detailed activities such as “jink-left” or “fire-missile”. The
planning horizon at this level is on the order of seconds to minutes. The flight control layer is
not addressed in this project.

Appendix B specifies the detailed problem domain definition. The domain includes Forces
(Aircraft and AAF), Missions, Orders of Battle, Targets, Locations, Plans, Planners, and
Intelligence Estimates. The data used to populate the domain model came primarily from two
sources. The first was a spreadsheet dataset used by AFRL/IFSB for model testing known as
“the Korean Scenario”. This provides data for a subset of US forces in and around South Korea.
The second was a well known public web site (http://www.globalsecurity.org), providing data on
North Korean forces and bases.

Previous Research

Early models for planning and optimizing in air combat focused on simplified stochastic games
and differential games (Isaacs, 1965). Karlin (1959) discusses the application of dynamic
programming, linear programming, and network flow analysis to the problem. Dresher (1981)
provides a number of interesting and still relevant formulations on topics such as the “Tactical
Air-War Game”, which we used for a simplified Level 1 (Forces/Roles) allocation problem, and
“Defense of Targets of Many Values”, which has useful implications for our Level 2
(Targets/Missions) analysis.

Significant research, largely within the DARPA JFACC (Joint Force Air Component
Commander) program (Heise and Morse, 2000), has investigated planning of military operations
near the third or even fourth level (Routing/Engagements or Flight Control) discussed above.
Many of these efforts emphasized a control-system based mathematical framework. Mukai et al.
(2000) provides a differential game formulation for opposing air and ground units. Unit
movement (on a 2-D grid) and attrition are governed by differential equations. The controls are
the speed, direction, and engagement “intensity” of each unit in each time period. The value of
the game is determined by a quadratic payoff function that tends to: 1) minimize distance

5

between units and their designated target locations, and 2) maximize enemy losses for any given
level of friendly losses. Cruz, et al. (2002) formulate a similar problem where the unit state
describes location, the number of “platforms”, and the number of weapons per platform. The
controls are movement, salvo size, and choice of target. The objectives are again to maximize
enemy losses while minimizing friendly losses. McEneaney and Ito (2000) attempt to optimize
both aircraft routes and engagement decisions made against hostile missile units and fixed
strategic targets. The unit state describes location (for aircraft and mobile missiles) and “health”.
The objective is to destroy strategic targets while each side tries to minimize its own losses and
maximize its opponent’s. The controls are determined via a two-level hierarchical optimization
procedure. First, the aircraft routing through the hostile region is determined; next, the time
ordering of aircraft engagements with missile sites is determined.

Each of the JFACC efforts above discretizes the decision space, creating a “curse of
dimensionality” for combinatorial optimization algorithms. They also assume perfect knowledge
of the true system state at all times. Finally, some may involve decisions best left – at least for
now – to humans on the scene. (For a fascinating, and still relevant, though controversial,
discussion on human vs. computer decision-making, see Dreyfus - 1994) A more recent paper
by McEneaney et al. (2003) refocuses their earlier model on unmanned combat air vehicles and
points out that the formulation provided is for lower levels of a decision hierarchy. He suggests
that the highest level decides strategic planning and resource allocation; a middle level
determines aircraft routes, engagement assignments, and support activities; while the lowest
level determines targeting and vehicle guidance. The paper also introduces the notion of having
only partial information on the system state. In a final nod to reality, the paper recognizes the
severe problem size limitations imposed by combinatorial explosion.

Cave and Busch (2003) also take a control-system approach to formulating the operational
planning problem within an Aerospace Operations Center. They provide examples of how the
system could work at the third level (Routing/Engagements) for aircraft being routed to targets
across a hostile battlefield. The system explicitly accounts for uncertainty, but modeling of Red
counter-action dynamics is limited. The existence of higher decision making levels is mentioned,
but an integration framework is not discussed.

The algorithms developed and tested in this project build on the preceding ideas and extend them
with several related advances in decision sciences. The main additional concepts from the
literature that were incorporated into our integrated hierarchical planning approach are as follows.

• Simulation-optimization (Carson and Maria, 1997; Dippon, 2003). Stochastic gradient (hill-

climbing) techniques useful for simultaneously estimating local response surface shapes (i.e.,
how does the expected value to Blue change with alternative Blue decisions?) from samples
generated by probabilistic simulation, and adjusting Blue’s decisions to maximize expected
value, have a long tradition in what is now called simulation-optimization. These ideas reach
back to the Evolutionary Operations (EVOP), Kiefer-Wolfowitz, and Robbins-Munro
iterative adjustment procedures for climbing unknown response surfaces. Our approach
exploits simulation-optimization techniques to automatically improve Blue’s plan, while

6

adding the novel feature of an embedding Red’s best response strategy (by “optimizing out”
Red’s choices via a multi-period linear programming approximation).

• Game theory and linear programming. From classical game theory (e.g., Dresher, 1981) we
adopted the idea of letting Red adopt a best response to Blue’s plan, thus encouraging Blue to
identify a traditional minimax strategy (when one exists in pure strategies). In effect, this
assumes that Red will have excellent intelligence and respond as if well informed about
Blue’s plans. If this perspective turns out to be overly pessimistic, Blue’s plan will be re-
optimized immediately (in one period) to take advantage of Red’s sub-optimal play. We
exploited the idea of shadow prices and hierarchical (Dantzig-Wolfe) decomposition from
large-scale and decentralized linear programming to coordinate among levels of the decision
hierarchy and to help optimize out Red’s planning decisions. In a departure from traditional
game theory, solutions were required to be pure strategies, i.e., randomized plans were ruled
out as unrealistic to implement, despite their potential theoretical advantages. (This entails no
loss of generality if the pure strategy sets are convex and each player’s payoff function is
continuous in both Red’s and Blue’s pure strategies and is quasi-concave in its own pure
strategies. But such nice mathematical results are not available for the discrete allocation
optimization choice sets of practical interest in real conflicts; hence we simply enforced a no-
randomization constraint.) Finally, we applied ideas of mechanism design from modern game
theory, to formulate the conflict as a bi-level hierarchical optimization problem, in which
Blue chooses a plan assuming that Red will choose a best response to it. This avoids the need
to find (probably unrealistic and computationally daunting) Bayesian Nash equilibria, and
reduces the problem to one that can be solved by adaptive optimization methods (with
suitable technical precautions, such as the inclusion of tabu-search type restrictions (Glover
and Laguna, 1998) to prevent hill-climbing optimization routines from cycling.)

• Reinforcement learning and adaptive optimization. In a real air conflict “game”, neither
player necessarily knows the structure or data of the games – e.g., the payoff functions and
the transition functions in Markov games (Lagoudakis and Parr, 2002). Common-knowledge
priors from which to compute theoretical Bayesian Nash equilibria cannot be justified. To
model such realistically incomplete knowledge, we assumed that players can only sample
from the distribution of outcomes for different pairs of Red and Blue decisions, via
simulation. Thus, the players are treated as both learning about the payoff function and
adaptively optimizing their decisions as the game evolves. Our models and algorithms
therefore combine ideas from adaptive dynamic programming, especially multi-period rollout
heuristics (Bertsekas et al., 1997) for solving Red’s multi-period optimization problem, with
“learn as you go” ideas from reinforcement learning. Rollout heuristics take a simple
decision rule (e.g., based on an LP model, in our case) and apply it several steps ahead to
forecast returns over a finite look-ahead horizon. Then, they re-optimize the initial (simple)
decision using the forecast returns as an approximate value function. Reinforcement learning
estimates value functions for state-specific decisions from sample data (Lagoudakis and Parr,
2002) and adjusts the decision rules to improve expected values. Both sets of ideas play
essential roles in the algorithms and heuristics that follow. We apply them directly to the
conflict simulation, rather to a simplified Markov game, to make the solutions as realistic as
possible.

7

Methods, Assumptions, and Procedures

General Algorithm

Level 1: Allocating Forces to Roles

Level 1allocate Blue’s forces to roles. We use the following roles for purposes of illustration,
although the method is general: Counter Air, Air Defense, Target Reduction, AAF Suppression,
and Other. Appendix B summarizes the input data, and the following sections provide greater
detail where needed. Level 1 allocates a fraction of each type of Blue force to each role for each
time period in the planning horizon. An allocation can also be interpreted as a plan or as a high
level “Course of Action” (COA).

The following Blue plan improvement algorithm accomplishes this allocation:

Blue Plan Improvement Algorithm

INPUTS: An initial feasible plan for Blue; initial values for the parameters (ω, α, ε) =
(horizon weight, discount factor, force reallocation proportion step size); D1 = the starting
problem domain data (including probability distribution for Red’s forces, targets, etc)

OUTPUTS: An array PBijt giving the fraction of Blue’s force of type i resources allocated
to role j in period t, for each t in the planning horizon. This is a Level 1 plan for Blue.

1. Initialize the horizon weight (ω = .50), the discount factor (α = .80), and the force
reallocation proportion (ε = .10), to values between 0 and 1. Set the planning
iteration index z =0. Initialize using an initial feasible Blue plan. This is an array of
non-negative allocation fractions,)0(ijtPB for each force i, role j, and time period t

(t=1,2,…T) subject to)0(ijtPB ≥ 0, ∀=∑ ,1)(
j

ijt zPB i, j, t. (This initial plan may be

generated randomly, via a heuristic, or imported from an external source.)
2. Given)(zPBijt , simulate the probability distribution of optimized Red responses and

outcomes using ω and α along with the starting problem domain data (forces,
targets, etc), D1. This will provide a mean and a standard deviation,)(zijtπ and
sijt(z), of relative marginal value for each Blue force, role, and time period (more
details below).

3. Use)(zijtπ and sijt(z) to modify Blues’s current plan to improve Blue’s expected
objective function. In general, we seek the reallocation of force where the net,
statistically significant gain, is greatest.

4. Adjust Blue’s allocations in the direction indicated, by adding ε to the gaining role
allocation and subtracting ε from the losing role allocation (if the losing role

8

allocation is currently less than ε we use that proportion instead) to obtain
)1(+zPBijt . Set z =z + 1.

5. If no further statistically significant improvements are found, STOP, otherwise
return to Step 2

In Step (1), default values of the input parameters are provided in parenthesis. It is necessary to
introduce a list of remembered “tabu” elements (Glover and Laguna, 1998) to the plan
improvement search in Step (4) to prevent a reallocation from being reversed for some number
of improving steps, thus preventing cycling.

Step (3) of the plan improvement algorithm generates K sample values for each incumbent plan.
Each individual “sample” outcome is a function of an instance of the possible Red force states.
The Red force state is drawn from a probability distribution that is assumed to be a result of the
latest intelligence estimates. At Level 1, the outcome is generated according the following
general algorithm:

Blue Plan Stochastic Evaluator (Level 1)

For k = 1 to K

Set the estimated Red force levels by sampling from their probability distribution
based on D1(k). Set Vk(z) = estimated net Value to Blue of plan)(zPBijt to 0.
For t = 1 to T

a) Determine Red’s approximate best response in period t by optimizing over
the next T – t + 1 time periods using Dt(k) and the horizon weight, ω. Select
the first period of the solution as Red’s response in period t, obtaining both
Red’s role allocation,)(zPRijt , and Blue’s relative marginal resource values,

k
ijtπ .

b) Using)(zPBijt ,)(zPRijt , and Dt(k), create Level 2 plans for period t for both
Blue and Red.

c) Use the Level 2 Plans to determine target assignments.
d) Use the target assignments to allocate forces, and run the stochastic

simulator for 1 period.
e) Set the Red and Blue force and target states to those found at the end of the

one-period simulation, and update the problem data: Dt(k) → Dt+1(k)
f) Set Vk(z)= Vk(z)+ αt-1Vkt(z) where Vkt(z) is the observed net value to Blue

extracted from targets during the period t simulation.

END

END

9

Compute
K

z
k
ijt

ijt
π

π =)(= and sijt(z) =
()

)1(
1

2

−

−∑
=

K

K

k
ijt

k
ijt ππ

, the average and standard deviation

over K iterations for the k
ijtπ returned by Step (a).

The outputs of the algorithm are the)(zijtπ , sijt(z), and the Vk(z). Note that the discounted Blue
net values, Vk(z) are not used in the optimization algorithm, but can be examined to view its
performance or to compare alternative improvement algorithms (as in the “Testing” section).

The approach used in the Stochastic Evaluator is illustrated in Figure 2 below. The long-term
optimization will capture long-term effects. The short-term response is then guided by the long-
term response. The short-term simulations capture uncertainty.

 1 2 3 4 5 6 …… T

…..

V1 V2 V3 V4 V5 V5 ….. VT

Approximate, deterministic,
long-term optimization models

Stochastic, short-term
simulation models

Figure 2. Optimization/Simulation Scheme to Generate T-Period Outcome

The horizon weight, ω, and the discount factor, α, work in tandem. The horizon weight places a
value on survival of forces beyond the T period planning horizon. A short term perspective, ω =
0, implies that forces have no value beyond T. As a result, the relative marginal resource values
for forces will be skewed in favor of the Target Reduction Roles. A long-term perspective, ω = 1,
implies that survival is given high consideration. Forces are conserved at the expense of more
immediate target value extraction. The discount factor, α, on the other hand, is not a control
parameter, but an evaluation parameter. It acknowledges that, other things being held equal, we
prefer shorter conflicts to longer ones. Target value extraction occurring early is more valued
than the same target value extraction occurring later.

10

The optimization technique used in Step (a) is described in further detail below in the section,
“Level 1 Mathematical Programming Formulation. Step (b) is described below in the section
“Creating a Level 2 Plan”. The stochastic simulation of Step (c) is described further under
“Simulation Model”.

Level 2: Assigning Forces to Targets

Level 2 is the lowest level modeled in this project – no downward integration was required.
Many of the steps required for a Level 2 analysis are performed automatically at Level 1, since a
detailed Level 2 plan is needed to simulate the outcome of the corresponding Level 1 allocation.
To give the user some control over the target assignment process of Level 2, it must be possible
to evaluate alternative plans. That is the role of the Level 2 Stochastic Evaluator described in
this section.

Blue Plan Stochastic Evaluator (Level 2)

If automated target selection is desired, initialize Blue’s target set to Null. Initialize the
domain data D1 to include the target set: D1(BlueTargetSet)

For k = 1 to K

1) Set the estimated Red force levels by drawing an instance from their probability
distribution: D1(k, BlueTargetSet)

2) Using ijtPB , ijtPR , and D1(k,BlueTargetSet), create Level 2 plans for both Blue and
Red.

3) Using the Level 2 Plans to make target assignments, run the stochastic simulator for
one period to obtain, Vk , the net value to Blue extracted from targets during the kth
simulation.

END

The primary output is the Vk. The Vk can also be recomputed as an average over the targets
selected as shown in the AFSimPlan User Guide

Level 1 Mathematical Programming Formulation

This section describes a method to optimize Red force allocation over T periods, given a T-
period Blue force allocation (i.e., a Level 1 Plan). The Blue allocation is determined by the
current Blue plan. The approach also returns Blue’s relative marginal values of resources in the
form of linear programming shadow prices. To enable a linear programming approach,
constraints on force quantities are relaxed to allow fractional forces. A further relaxation on Red
attrition is described and limitations of the technique are identified.

11

In each period, t (t =1, 2,…T), surviving forces on both sides are first allocated to some
combination of roles: {Counter Air, Air Defense, Target Reduction, AAF Suppression, and
Other}. Attrition then occurs in each force/role combination according to rules regarding which
offensive and defensive roles may oppose each other. These rules are encapsulated in attrition
rate matrices, described below. Forces in the Other role in a given time period do not participate
in combat activities and do not undergo significant attrition1. The force types in the Level 1
model correspond to the different airframes and AAF types. AAF can only fulfill the Air
Defense and Other roles. All force types can be assigned to the Other role.

variables:

raijt = # of Red forces of type i allocated to role j at the beginning of t; i=1,2,…Fr; j = 1-5
baijt = # of Blue forces of type i allocated to role j at the beginning of t; i=1,2,…Fb; j = 1-5
rijt = # of Red forces of type i, surviving period t attrition, that were allocated to role j at the
beginning of period t
bijt = # of Blue forces of type i, surviving period t attrition, that were allocated to role j at the
beginning of period t

Assume j = 3 represents the Target Reduction role. Only forces assigned to this role can directly
“extract” value by destroying enemy targets.

r(t), ra(t)=row vectors of length Fr*5 of Red force quantities (all i,j) in period t
b(t), ba(t)=row vectors of length Fb*5 of Blue force quantities (all i,j) in period t

input parameters:

 PBijt = Blue’s weights for force i, role j, in period t (these sum to 1.0 across a given (i,t) -
this is the current Blue conceptual plan)

 LAMBDAB = rate at which Blue forces (i,j) destroy Red forces (i',j') (2-d matrix)
 LAMBDAR = rate at which Red forces (i',j') destroy Blue forces (i,j) (2-d matrix)

The LAMBDAx matrices reflect the invulnerability of the Other role.

 vbi = average value reduction (from red’s perspective) that Blue force i in the Target
Reduction role achieve

 sbi = salvage value factor for Blue force i
 vri = average value reduction (from red’s perspective) that Red force i in the Target

Reduction role achieve
 sri = salvage value factor for Red force i
 vrTotal = the total remaining value of all Red targets (Red perspective)
 b(0) = any initial feasible assignment of current Blue forces to roles
 r(0) = any initial feasible assignment of current Red forces to roles

Optimizing from Red’s perspective, the problem is initially formulated as P(T).

1 Their attrition rate may actually be a relatively small nonzero value that does not have a major impact on high-
level strategy.

12

P(T):
Maximize () ()[] () ()[]∑ ∑ ∑∑ ∑ ∑ = = == = =

+−+ br F

i

T

t j ijTiitii
F

i

T

t j ijTiitii bvbsbbvbrvrsrrvr
1 1

5

131 1

5

13

Subject to:

max value obtainable:

∑ ∑= =
≤

T

t

F

i iti
r vrTotalvrr

1 1 3

expected attrition: t = 1, 2, 3.... T

b(t) = max(0, ba(t) - ra(t)*LAMBDAR)
r(t) = max(0, ra(t) - ba(t)*LAMBDAB)

Red reallocation: t = 1, 2,....T

∑∑
=

−
=

=
5

1
)1(

5

1 j
tij

j
ijtij rraI i =1,2,…Fr (Iij=1 if role j is feasible for force i; 0 otherwise)

Blue reallocation to plan: t = 1,2,....T

baij’t = PBij’t * ∑j bij(t-1) i=1,2,…Fb; j’ = 1,2,3,4,5

nonnegativity:

raijt, rijt, baijt, bijt ≥ 0

Discussion

Note that the Red allocation proportions, PRijt(z), discussed in the previous section are

determined by PRijt(z) =
∑ j ijt

ijt

ra
ra

.

. The Blue relative marginal values for resources, k
ijtπ , are the

values of the dual variable, i.e., “shadow prices” on the “Blue reallocation to plan” constraints.

This is a conservative formulation in that aircraft must survive the entire mission to extract target
value. In the simulation, aircraft must only survive the first ½ of the mission to extract target
value.

13

Forces surviving until period T are given a salvage value equal to sbi*vbi (for blue) or sri*vri (for
red). This reflects the fact that forces have value beyond the scope (planning horizon) of the
model.

To solve this formulation via linear programming, eliminate the nonlinear “max” in the attrition
dynamics for Blue by replacing the attrition equations with:

b(t) ≥ ba(t) - ra(t)*LAMBDAR t = 1, 2,…T

There is no incentive for b(t) to be large since the Blue variables only enter the objective
function with negative sign. In most cases, there is a disincentive for them to be large, so that the
left hand side will be set to zero when the right hand side is negative. In the other cases, the
value of b(t) will not matter since there is no effect on the objective function. An example would
be the numbers of Blue forces allocated to non target reducing roles in period T (bijT, j ≠ 3)

This approach would not work for the Red variables, since they enter the objective function with
positive sign. The problem would be unbounded. In principle, one could enforce the Red
attrition constraints by introducing binary variables, yijt = 0,1 such that:

r(t) = y(t)*[ra(t) - ba(t)*LAMBDAB] t = 1, 2,…T

But this formulation would not be computationally practical to solve directly as there are many
binary variables, and the constraints are nonlinear. The reallocation at each period further
complicates the solution; an airframe/role combination that goes to zero in one period may
become nonzero in the next through a reallocation. The y(t) must also be constrained to make
physical sense, i.e., once an entire force type has been eliminated, the corresponding yijt must
remain at 0 for subsequent t. We instead first solve the relaxed problem using:

r(t) = ra(t) - ba(t)*LAMBDAB; -∞ ≤ r(t) ≤ ∞ t = 1, 2,…T

to represent Red’s attrition, while eliminating the nonnegativity constraints on the r(t). Refer to
this relaxed formulation as RP(T). Solutions to RP(T) have several notable characteristics:

 Red can have attrition in an (i,j,t) combination even if there are no Red forces allocated
there. This will result in a negative value for the corresponding element of r(t).

 This “fictitious attrition” will be deducted from the quantity that can be allocated in
period t+1.

 It is possible that no feasible solution can be found. If all units of a given force type are
destroyed by real or fictitious attrition by period t, there is no way to allocate positive
quantities, ra(t+1). However, we must retain the lower bound of 0 on the allocated
quantities, otherwise the LP will allocate negative quantities to the invulnerable Other
role to pump up the allocation to other roles.

 The solution to RP(T) will provide a lower bound on the objective function (value to red)
of P(T) since Red may have higher attrition in the solution than is warranted by the
allocations. (Note that negative Red values will decrease attrition on blue, perhaps to the
point of having negative attrition.)

 The infeasibilities in this approach increase as T increases since the negative attrition is
cumulative.

14

We have developed a practical heuristic to generate a good feasible (but not necessarily optimal)
solution to P(T) that accounts for the above considerations. Because of this, and the fact that we
are modeling stochastic attrition and target reduction with average deterministic values, we will
only extract the period 1 solution for Red’s allocation. Similarly, we will only extract the
shadow prices on Blues period 1 allocation. But for these values to capture long-term effects,
we still must extend (“roll out”) the model out to T periods. We proceed with the following
algorithm to ensure a T period feasible solution:

Generating Good Feasible Solutions to P(T)

1. For t' = 1,2,…T
a. Solve RP(t')
b. Refer to the Red solution variables as rijt and raijt (post-attrition variables

and allocation variables). For each post attrition variable rijt < 0, t=1,2,…t',
add a constraint to the LP such that rijt = 0.

2. solve RP(T)

This algorithm requires solving (T+1)(T+2)/2 – 1 linear programs for a single sample of the
Level 1 Stochastic Evaluator.

It may also be possible to devise a more efficient branch and bound scheme to find a globally
optimal solution, but this is beyond the scope of the current effort.

The above algorithms yield the proportion of aircraft Red allocated to each role in each
period. We can compute CRijt from these to get the Red equivalent to Blue’s plan. As noted
above, the optimality of the Red plan is more suspect for higher values of t, but only the first
period allocation is used, even though the LP is run for T periods in an attempt to estimate longer
term effects, consistent with the “rollout” heuristic principle (Bertsekas et al., 1997). This
approach was also explored in Yost and Washburn, who applied it to attack aircraft hitting
targets in stages.

The LP model also provides prices for the Blue allocation, indicating where Blue could benefit
by adjustments to the plan. The prices are the dual variables of the “Blue reallocation to plan”
constraints. Blue’s value is obtained by recomputing the objective function using v’s for Blue.

The formulation is conservative in that it assumes that target-reducers (i.e., hitting or striking
planes)must survive the period to obtain target value in that period.

In the domain model, TargetEffectiveness is the average capability degradation per strike, by
target, when this aircraft is in the Target Reduction role. We represent this using Eik, the
effectiveness of airframe i when used against target k. The domain attribute, RedValue, is the
value that Blue believes that Red currently places on a target. Represent this using vR

k for targets
on Reds target list (Blue assets) and vB

k for targets on Blues target list (Red assets)

15

R

K

k

R
kik

i K

vE
vr

R

∑
== 1 B

K

k

B
kik

i K

vE
vb

B

∑
== 1

In practice (and in the simulation model), each side will likely strike the targets in order of
decreasing marginal expected value. If we were modeling Red only, we could include this
feature using concave piecewise costs in the objective function, automatically forcing Red to hit
the highest value targets first. However, this will not work for Blue since Blue values come into
the objective function with a negative sign. Blue would thus get assigned to hitting lowest value
targets first. One could force a priority order on Blue or include specific targets in Blue’s plan
by expanding PBijt to PBijtk. (One could even automate the computation of these factors using the
PBijtk and the Eik) However, doing so requires making assumptions on the attrition rate prior to
even running the model.

Attrition Rate Matrices

Both the Level 1 LP model and the Level 2 simulation require attrition rate matrices - the rates
per mission at which opposing forces might be expected to destroy each other. The Level 2
simulation is used in the Stochastic Evaluators for both Level 1 and Level 2. In this section, we
first derive the attrition rates for the Level 2 case, when we know the specific quantities of
opposing forces. We then show how we can approximate the rates for the Level 1 LP, where
precise numbers of opposing forces are not yet known. The attrition rate matrices are a function
of underlying values:

λ(i; i') = the rate per hour at which forces of type i destroy opposing weapons of type i' when
engaged solely against forces of type i'. (In practice, from external testing/simulations)

ψ (i, j, t ; i', j', t') = the allocation of fire from weapons of type i, role j, attacking/defending target
location t to opposing weapons of type i', role j' assigned to attack/defend at target location t',
∑∑∑ =

' ' '

1)',',';,,(
i j t

tjitjiψ (computed using fire-attribution method below).

z(i, j; i') = the number of hours per mission period spent by force type i engaging enemy weapon
systems of force type i', when assigned to role j (computed via time-over-target method below).

16

These combine to form:

λ (i, j, t ; i', j', t') = λ(i; i') x ψ (i, j, t ; i', j', t') x z(i, j; i') where

λ (i, j, t ; i', j', t') = the rate/mission at which weapons of type i, role j, attacking/defending target
location t, destroy opposing weapons of type i', role j', assigned to attack/defend at target
location t'.

Note that the rates are independent of the bases from which the forces originate. Base location
only determines which forces may feasibly reach which targets based on the combat range
(including any aerial refueling) of the forces. Further, the matrix λ (i, j, t ; i', j', t’) will be
sparse in most cases where targets are scattered over a large area; that is, there are fewer
interactions among target locations.

Fire-Attribution Method

There are many schemes for computing fire-allocation as a function of weapon characteristics
and weapon quantities. In our model, we assume an allocation based on the relative numbers of
enemy weapon systems where:

Allocation of fire against enemy weapon system k' =
∑

k
k

k

N
N '

where Nk is the number of enemy weapon systems of type k. Since these quantities can change
each time period through attrition, this type of allocation must be recomputed every time period.
In addition, we must determine which weapon systems should be considered in direct opposition
to each other at a given time, i.e., engaged in combat, over a large battlefield.

The number of opposing weapon systems is estimated based on circular “combat zones” around
target centers. The idea is that when weapon systems are assigned to defend a specific target
location, they will attack offensive weapon systems within a certain radius of the target center.
Conversely, weapon systems assigned to attack a specific target location will attack defensive
weapon systems within a certain radius of the target center. The size of these circular combat
zones are dependent on the specific force types involved and are assumed to be a function of
underlying characteristics such as weapon range, performance constraints, and tactical
considerations. Weapon systems assigned to attack a target location are assumed to engage in
combat within these zones. The overall effect of this approach is to create “fuzzy locations”
with partial interactions occurring across location boundaries. In reality, a force defending a
target may cover a larger area, or it may not even have a specific target to defend. It may engage
an attacking force at some distance from any final target area. However, the main purpose of

17

these combat zones is to allocate fire among various weapon systems that are likely to come into
contact with one another.

Notional combat zones may overlap. To illustrate, suppose that an offensive weapon system is
attacking target location A, as in Figure 3 below. The circle about A represents the “target
attack radius” of the offensive force type. The circles about B and C represent the “target
defense radius” of defensive weapon systems at those target locations. We also know the

C

B

A

Figure 3. Allocation of Fire for Offensive Forces at Target Location A

number of weapon systems of the given type assigned to defend each target location. Assume
that we want to know the number of opposing weapon systems of a given type for the purpose of
allocating the fire of offensive weapon systems (as in the equation above) attacking target
location A. The total number of defensive weapon systems in opposition at location A are then
assumed to be those defensive weapon systems assigned to defend A as well as a fraction of
those assigned to defend B and C. The fractions are determined by the size of the overlap with
target location A. For example, suppose that 0.20 of target location C overlaps target location A.
Then we will attribute 20% of the weapon systems assigned to defend target location C as being
in opposition to offensive weapon systems attacking target location A. Thus for any given target
location, the number of opposing defensive forces is estimated by adding “overlapping forces” to
those specifically assigned to defend that target location. Note that each defensive force type
may have its own target defense radius. Separate computations are needed to determine the
attribution quantities (the “Nk”) for each weapon system type. Let:

18

f(i, j, t; i', j', t') = the fraction of defensive forces (i', j') assigned to defend target location t'
(within defense radius, r(i')) engaged by forces (i, j) assigned to attack target location t (within
attack radius, r(i)). Assume f(i, j, t; i', j', t') = 1.

N(i', j', t') = the number of defensive forces (i', j') assigned to defend target location t'.

I(i,j; i', j') = 1 if weapon system (i', j') is vulnerable to weapon system (i, j); 0 otherwise

∑∑∑
=

' ' '
)',';,()',','()',',',,,(

)',';,()',','()',',';,,()',',';,,(

i j t
jijiItjiNtjitjif

jijiItjiNtjitjiftjitjiψ

The reverse situation is used to determine the fire allocation of defensive forces. Suppose that
we are determining the allocation of fire for defensive forces of a given type at target location A
as depicted in Figure 4 below. The size of the combat zones is again determined by the target
defense radius of the defensive weapon systems at A, and the target attack radius of offensive
forces at target locations B and C.

The defensive forces will be firing at enemy forces assigned to attack target location A, as well
as portions of those assigned to attack target locations B and C.

C

B

A

Figure 4. Allocation of Fire for Defensive Forces at Target Location A

The equation for ψ (i, j, t ; i', j', t') above holds in the defensive case with the redefinitions:

f(i, j, t; i', j', t') = the fraction of offensive forces (i', j') assigned to attack target location t' (within
attack radius, r(i')) engaged by forces (i, j) assigned to defend target location t (within defense
radius, r(i)). Assume f(i, j, t; i', j', t') = 1.

N(i', j', t') = the number of offensive forces (i', j') assigned to attack target location t'.

19

Time-Over-Target Method

The approach for time-over-target is based on the attack and defense radii discussed above. The
additional parameter required is the average combat speed of the attacking forces. The conflict
length is based on the speed of the attacker. We compute the average time the attacker needs to
travel from the edge of the relevant combat zone to its center and back (2 radii). Let:

s(i) = the average combat speed of attacking force i . (0 or NA for fixed defenses)

Then when i is assigned an offensive role j:

z(i, j; i') = 2ra(i)/s(i)

where ra(i) is the attack radius of force i. When i is assigned a defensive role j:

z(i, j; i') = 2rd(i)/s(i')

where rd(i) is the defense radius of force i.

Level 1 Approximation

The formulation above for attrition rates can be adapted to the Level 1 LP model with several
approximating steps. However, the inaccuracies increase the further out in time we try to
project. This is one reason we always retain only the first period results from the LP in our
general algorithm. Let:

λ(i; i') = the rate per hour at which forces of type i destroy opposing weapons of type i' when
engaged solely against forces of type i'. (From external testing/simulations)

ψ(i, j; i', j') = the allocation of fire from weapons of type i, role j, to opposing weapons of type i',
role j'. ∑∑ =

' '

1)',';,(
i j

jijiψ

z(i, j; i') = the number of hours per mission period spent by force type i role j, engaging enemy
weapon systems of force type i'.

Which combine to form:

λ (i, j; i', j') = λ(i; i') x ψ(i, j; i', j') x z(i, j; i')

20

where λ (i, j; i', j') = the rate/mission at which weapons of type i, role j, destroy opposing
weapons of type i', role j'. The allocation of fire terms still require I(i,j; i', j') = 1 if weapon
system (i', j') is vulnerable to weapon system (i, j); 0 otherwise. Now we let:

N(i,j) = the current number of weapon systems of force type i assigned to role j.

Then:

∑∑
=

' '
)',',,()','(

)',',,()','()',',,(

i j
jijiIjiN

jijiIjiNjijiψ

The fire allocation terms, ψ, are time dependent as they depend on the current number of forces
in each assigned role/target location. We can most easily compute λ (i, j; i', j', t'; τ) for red,
where τ is the time period, since we have the parameters PBijτ (Blue plan). Let, N(i) = the total
current amount of Blue force i. We can compute an approximate ψ specific to each time period
via:

∑∑
=

' '
''

''

)',',,()(
)',',,()(

);',';,(

i j
ji

ji

jijiIPBiN
jijiIPBiN

jiji
τ

ττψ

Note this assumes that attrition among different Blue forces i, will occur in the same proportions.
It is somewhat more difficult to compute the fire allocation of Blue forces against Red - we do
not know the allocation of Red forces to roles a priori since that is the function of the LP.
Instead, we let Blue fire allocations be computed as:

∑
=

'

)',',,()'(
)',',,()'();',';,(

i

jijiIiN
jijiIiNjiji τψ

since we do know the total number of Red forces of each type at the beginning of the planning
horizon. (Note that we assume I(i,j; i', j') = 0 if roles j or j' are infeasible for forces i or i'
respectively.) The effect is to allocate the total attack strength allocated against a Red force type
into each feasible role within that force type. While seemingly a crude approximation, this
works reasonably well because the LP tends to channel each Red force into a single optimal role
in a given time period. We also must consider that due to varying rates of attrition among force
types, even this approximation becomes less accurate over time. We again rely upon that fact
that we only extract the first period results from each LP to compensate.

21

Update of AAF Target Values

AAF (anti-aircraft forces) have no intrinsic target value in the model. While they are mission
targets, their value comes from their ability to degrade forces attacking targets that have intrinsic
value such as bridges, airbases, ports, etc. This implies that within the Level 1 LP Model, AAF
are treated strictly as forces. In the Level 2 simulation, they are treated as both targets and forces,
but no target value is extracted from them. The single way that AAF target value enters the
model is in target prioritization during the process of creating a level 2 plan for both sides (see
“Creating a Level 2 Plan” below).

In the case of AAF targets we need to make use of Level 1 shadow prices on AAF resources and
the values of the targets they are presumed to defend. The shadow price reflects the contribution
to long term value. We implemented a simple pro-rating scheme as follows:

π = the period 1 shadow price on a unit of AAF resource j from the Level 1 LP (assume for now,
without loss of generality, that a side has only one type of AAF).

vt = the value of target t.

T = the set of all non-AAF targets

Recall the geographical overlap factors, f, discussed in “Attrition Matrices” above. Let:

ft(t') = fraction of non-AAF target t defended from force i by AAF at location t'

where the fraction is determined by the overlap of combat radii centered at locations t and t'. The
combat radii used are the TargetDefenseRadius attribute of AAF.

∑
∑

∈

∈=
Tt t

Tt tt

tf
vtf

tv
)'(

)'(
)'(= the weighted average value of non-AAF targets defended by AAA at

location t'

T
v

v Tt t∑∈= = the average target value of non-AAF targets

If t' is an AAF target:

v
tvvt

)'(
' π=

The value of AAF target t' is the Level 1 shadow price of AAF scaled by the ratio of average
target value defended by t' to overall average target value.

22

Creating a Level 2 Plan

The algorithm to build a Level 2 plan for Blue and/or Red (CreateLevel2Plan.m) assumes Red
and Blue Planner input data populated as follows:

 Blue Force instances have been created. Since the algorithm uses their assigned role we
assume that the role assignments in each instance are consistent with the current Level 1
Blue Plan.

 Blue Force instances have an assigned base location with known Latitude and Longitude.

 For the case of Red, one “dummy instance” of each Force type (unique name) has been

created to provide force characteristics. The instance does not need an assigned role or
base.

 Red Force quantity estimates are provided by Force type and Base in the form of an

intelligence estimate. Each base has known Latitude and Longitude.

 The Red planner contains a populated Level1Plan (from the Level 1 algorithms) defining
the Role proportions for each Force type.

 Targets on the target list of each side have been fully populated, including imputed values

for AAF type targets.

The outputs of the algorithm are data structures RedForceAssignments(i,j,t) and
BlueForceAssignments(i,j,t) giving the quantities assigned to each Force i, Role j, Target t. The
domain of t is the Blue target list followed by the Red target list. Aircraft can be assigned to
aircraft on the opposing target list in the case of the Air Defense role.

The algorithm can compute just a Red Level 2 plan if Blue already has an externally or
previously generated Level 2 Plan. In that case, the Blue plan is held fixed. Blue can also be
constrained to strike only within a specified subset of targets.

Greedy assignments generate the initial solution. A series of improving swaps of target-hitting
aircraft (Target Reduction and AAF Suppression) and subsequent reallocations of Air Defense
and Counter Air are used to improve the solution where each side operates in turn. The
assignment processes for the two sides proceed via a “Blue Phase” and a “Red Phase”. Each
phase consists of three main steps in the following sequence:

1. Assign target hitting aircraft to targets
2. Opposing Air Defense aircraft and AAF are assigned to targets in response to (1)
3. Assign Counter Air to targets to escort the aircraft in (1) and defend against the aircraft in

(2)

23

Each assignment step is based on a greedy heuristic that assigns each aircraft to the target where
it can produce the highest expected value extraction (target destruction) or destruction of enemy
aircraft. Aircraft can only be assigned to targets within range of their home base. Assignment to
a given target can occur if a maximum allocation has not been reached, or if all targets already
have a maximum allocation. In the case of target hitting aircraft, the maximum allocation is a
sum of the expected target reduction proportion that will occur. The default is 2.0; this accounts
for the stochastic nature of the target strikes and the fact that some aircraft may be destroyed
before reaching their targets. In the case of Air Defense or Counter Air, the maximum allocation
reflects the expected proportion of opposing aircraft destroyed. The default is 1.0. We provide a
simplified statement of the assignment algorithm below:

1. Perform an initial greedy-based assignment of forces using a Blue Phase followed by a Red
Phase. Let redTargetSet be the resulting set of targets assigned to Red target strike aircraft and
blueTargetSet be the comparable set for Blue (blueTargetSet can also be specified in advance).

2. For each target, t, compute a net value to blue, V(t), using the production function
V(t)=ValueEstimator(RedForceAssignments(:,:,t),BlueForceAssignments(:,:,t),t). We abbreviate
this function as V(R(t),B(t),t).

3. Set:
improving = TRUE
BlueTabuSet = {}
RedTabuSet = {}
TabuTime = 10
Iteration=0;
While (improving)

Iteration=Iteration+1

3A. Blue Phase: (hold the Red Phase solution fixed.)

bestImprovement = 0;
For each pair2 (t1,t2) of targets in blueTargetSet
For each type of target strike aircraft and target strike roles in t1
If (t1,t2,type i, role j not ε BlueTabuSet)

Switch one unit of target strike aircraft from target t1 to t2, providing assignment
B'. Let Vest(t1,t2) = V(R(t1),B'(t1),t1) + V(R(t2),B'(t2),t2) and V(t1,t2)=
V(R(t1),B(t1),t1) + V(R(t2),B(t2),t2)

If (Vest(t1,t2) > V(t1,t2))

2 If blueTargetSet has > 10 targets we select a random subset of 10 targets.

24

Perform Steps 2 and 3 of a Blue Phase assignment to update assignment B'
and to compute R'.
Compute Vnew(R'(t),B'(t),t) for each t (with R'(t) ≠ R(t) OR B'(t) ≠ B(t))

If (∑Vnew - ∑ V > bestImprovement)

bestImprovement = ∑Vnew - ∑ V
bestSwap = [t1, t2, i, j]
bestB = B'
bestR = R'
bestV = Vnew

If (bestImprovement > 0)

Perform bestSwap (B = bestB, R = bestR, V = bestV)
Improving = TRUE
Reverse operation: (t2, t1, type i, role j) BlueTabuSet with IncludeTime =
Iteration

Else
Improving = FALSE.

Remove any elements from BlueTabuSet with IncludeTime < Iteration-TabuTime

3B. Red Phase: (hold the Blue Phase solution fixed)

[This is analogous to the Blue Phase except that Red seeks the swap with the largest net
decrease in value to blue]

Discussion

Each greedy assignment step considers the number of aircraft available for a given role. For
Blue, the individual instances define availability. For Red, the Level1Plan proportions and the
estimated force quantities by base give the total numbers available. For both Red and Blue, the
target location and base location are used to evaluate assignment feasibility. The target must be
within the range of the aircraft.

The test, Vest(t1,t2) > V(t1,t2), considers only the changes of value attributable to the swap of
target strike aircraft. Since it does not also consider any subsequent reallocation of Air Defense
and Counter Air occurring in the Blue phase it is an approximation or “hint”. Its chief purpose is
the speed up the algorithm, which is subject to combinatorial growth as targets increase.

The algorithm was implemented with tabu (Glover and Laguna, 1998) methods to avoid cycles
(which were observed during testing). A cycle is where a swap keeps getting reversed, leading

25

to an infinite loop. Each time a swap occurs, the algorithm may not reverse the swap for a
specified number of cycles.

A limit on the number of iterations can be specified in advance. A limit of 0 implies that only an
initial feasible solution is desired.

The production function V(R(t),B(t),t) produces a net value to Blue from the perspective of both
Red and blue, based on the Target.RedValue and Target.Value attributes. Blue operates on Blue
perspective values while Red operates on Red perspective values.

The production function V(R(t),B(t),t) estimates the value extracted at each target when a given
combination of Red and Blue forces are present, assuming no interactions with other nearby
targets. First, attrition at the target occurs according to deterministic rate matrices. Then, target
value extraction occurs according to the cumulative distribution function for the exponential
distribution modeling target effects. This approach turned out to be both fast and stable.
Interestingly, we found that few (less than 10) improvements could be made to the initial greedy
solution for Red and Blue plans.

Stochastic Simulator

The attrition and target engagement simulation (AerialAttrition2.m) operates at planning Level 2.
Since Level 2 incorporates target and mission planning, the simulation model must distinguish
between target locations. The input includes the number of aircraft by side, force type, and role
assigned to attack or defend each target. These quantities were determined using the algorithm
described in Creating a Level 2 Plan above.

The simulation consists of three main phases:

Phase 1 Pre-Target: Counter Air, Target Reduction, and AAF Suppression on each side fights it
out with opposing AAF and other Air Defense for 1/2 time period. Attrition reduces the force
quantities.

Phase 2 Target: Surviving Target Reduction and AAF Suppression aircraft on each side engage
Targets to determine a score. The capability indices at the targets are reduced accordingly.

Phase 3 Post-Target: Aerial battle of Phase 1 recommences for remaining 1/2 of time period
with remaining aircraft

The planning logic assumes that the primary objective of the air campaign is to support the
forces (hit Targets) on the ground. If more planes can be allocated to this role, the score will be
higher. Clearly, a myopic strategy of assigning too many aircraft, too soon to Target Reduction
may not work well. The enemy Air Defense may need to be eroded first so that Target
Reduction forces do not all get destroyed.

26

Attrition Logic

The attrition portions of the simulation (Phases 1 and 3) are designed as a multi-weapon type,
stochastic “Lanchester” model. The state of each side (Red/Blue) is provided by a state-vector of
weapon-system types (as in Popken and Cox, 2000) by location. Each unit on each side has a set
of parameters designating the rate at which they can destroy opposing force types. To illustrate:

λij = the rate (per planning period) at which forces of type i destroy opposing forces of type j
when engaged solely against weapons of type j (assume that i and j incorporate the notion of
force type, role, and location).

Since each unit can potentially destroy more than one opposing type, a probabilistic fire
allocation scheme has been devised. It is based on the “fractional allocation method” discussed
in Anderson and Miercort (1989). The probability of a unit of weapon type i on side s, selecting
an opposing weapon type j on side s' is given as:

∑ =

= '

1
'

'

sN

j
s
j

s
ij

s
j

s
ijs

ij
WC

WC
A

where:

Aij

s = the allocation of fire from a weapon of type i on side s when that weapon is engaging an

enemy of type j; i = 1,2,3, .. sN , j = 1,2,3, .. 'sN , s ∈ {R, B}. Note that 1
'

1
=∑ =

sN

j ijA .

=s

ijC the corresponding fire allocation weighting coefficient

Wi

s = the number of weapons of type i on side s; i = 1,2,3, .. Ns, s ∈ {R, B}

Ns = the number of different weapon types on side s; s ∈ {R, B}

Note that this allocation rule is state-dependent in that it depends on the current number of
surviving weapons of each type on each side. Aij

s is constructed to concentrate fire on the
weapon types with greater number. In some cases, one can improve the allocation by
appropriate selection of s

ijC . Anderson and Miercort (1989) suggest that:

'' s
ji

s
j

s
ij

s
i

s
ij PEPEC =

where:

27

Ei
s = the average number of engagements per time period made by a weapon of type i on side s

(against all enemy weapons). Note that Ei
s is the inverse of the mean of the interfiring time

distribution for weapon system i; i = 1, 2, 3, .. Ns, s ∈ {R, B}.

Pij

s = the probability of kill per engagement by a weapon of type i on side s when that weapon is
engaging an enemy of type j; i = 1, 2, 3, .. sN , j = 1, 2, 3, .. 'sN , s ∈ {R, B}.

This formulation tends to focus fire on targets that are most effective by weapons which are the
most effective against them. However, problems arise when opposing forces are relatively
defenseless but are nevertheless very desirable for targeting (e.g. Mig-29 vs. B52). The
equation above would give them a low or zero allocation. For this reason, we use a simple
allocation where the parameters, s

ijC , are set to 1.0; allocation is based on relative numbers of
opposing forces at a given location.

Next, we need to know how to determine what gets destroyed and when in the simulation. We
define the “total destruction rate” as:

λj
s = the total rate at which weapons of type j on side s are being destroyed by weapons on the

opposing side, or

∑=
=

' '

1
''

sN

i
s

i
s
ij

s
ij

s
j WA λλ

We assume that the casualty process is a Markov process with rate, λj
s. Therefore the time

between kills for each weapon type j on side s has an exponential distribution with mean (1/ λj
s)

(similar to the Bonder-Ferrell approach to determining Lanchester rate coefficients (Taylor,
1983)). But since these rates change with the force populations, they must be updated after each
kill. This process occurs within the following attrition simulation algorithm:

Set Wi

s = the surviving number of weapons of type i on side s; i = 1,2,3, .. Ns, s ∈ {R, B}.
clock=0

while clock < T

1. compute the fire allocation fractions Aij
s

2. compute the total destruction rate for weapons of type j on side s: ∑=
=

' '

1
''

sN

i
s

i
s
ij

s
ij

s
j WA λλ

3. determine the next time to destruction, tj

s, for each weapon type by drawing from an
exponential probability distribution E(λj

s)

28

4. find tmin = minj,s(tj

s)

5. if (clock + tmin < T)

a. for s and j such that tj
s = minj,s(tj

s), set Wj
s =Wj

s –1

6. set clock = clock + tmin

Target Engagement Model

Target engagement occurs during the second or middle phase of the simulation (via
EngageTargetList2.m in the accompanying MATLAB files). The surviving Target Reduction
and AAF Suppression aircraft on each side hit the target in the target location to which they are
assigned.

For each target location, the model works through the targeting aircraft on each side. First, the
current time period must be within the window of opportunity defined for the target. The actual
damage done by an aircraft is then determined probabilistically. The damage is modeled as an
exponential random variable with a mean value equal to the target effectiveness (average
capability reduction by target) of the aircraft. After each strike, the target lists are updated and
value reduction is accumulated to score the engagement. No value can be extracted from a target
once its capability falls below a desired damage level.

Note that each target has two different “values”, one according to Blue’s value system, the
second according to Blue’s perception of Red’s value system. The target engagement model
returns the scores from both value systems. (Higher level algorithms will assume that each side
seeks to optimize decisions according to their own value system.)

29

Results and Discussion

Database

The data used to populate the domain model came primarily from two sources. The first is a
spreadsheet dataset used by AFRL/IFSB for model testing known as “the Korean Scenario”. It
provides data for a subset of US forces - on the order of several hundred individual aircraft - in
and around South Korea. The second major source, a well known public web site
(http://www.globalsecurity.org), was used to obtain data regarding North Korean forces and
bases. The test database contains 13 Blue force types and 7 Red (North Korean) force types,
including both aircraft and AAF on each side. Blue has 15 base locations, each of which is a
target for Red. Red has 201 targets, including bases, SAM sites, ground force concentrations,
and various infrastructure targets.

Some of the domain attributes were approximated with plausible, if not completely accurate,
values. Approximate data suffice to explore the dynamics of the planning algorithms. The
approximations included the combat effectiveness (kills/hr when a unit of force type i is in
combat against force type j), target effectiveness (capability degradation per mission by force i
against target t) and the target values. To compute combat effectiveness, we used some simple
heuristic rules based on a relative force strength index. For target effectiveness, we used a scale
that was based on the lbs of munitions carried by an aircraft versus an estimate of lbs. of
munitions needed to destroy a target. For target values, we used estimates based on examples
from the AFRL data set. (These rules are documented in the GenerateTables.m file in the
TestingAndMaintenance folder of the accompanying MATLAB files. Also see the installation
instructions on how to use this function file to generate revised data).

Verification Testing

The purpose of this testing is to ensure that no errors or warnings occur over a range of input
data values provided by a random data generator and by the final Korean scenario data set. All
algorithm outputs appeared properly formed with reasonable values. All controls on the
MATLAB GUI panels (see Appendix A: AFSimPlan Software) functioned as expected with
correct displays and invoked behaviors.

Performance Testing

The purpose of this testing was to determine the runtime requirements of the major algorithms.
We first used the MATLAB “profile” function to find and eliminate bottlenecks. The next step
was to benchmark the test machine using the MATLAB “bench” function (Figure 5). This
provides a baseline for comparing the performance results to those obtained on a different
machine.

30

Figure 5. MATLAB Benchmark for the Test Machine

Level 1

The following performance tests were performed:

1. Record the average time required to perform a stochastic evaluation of a given Blue Level 1

plan with 10 sample iterations per evaluation.
2. Test the plan optimization time for a 5 period plan:

a. Vary N (the max # of improvement steps used to obtain a revised Blue Plan) set
of N = {100,200,…. Max}

b. Set the Blue plan to an uninformed (flat) prior distribution for the feasible roles for
each force. Set K = 10 = number sample evaluations per Level 1 Blue plan. Set the
horizon weight to 1.0.

c. Record the total time required to complete optimization for each optimization level, N.

31

N
(improvement

steps)

Total time
(hr)

Cumulative
Time/Step
(min)

Time/Step
for Interval

100 7.26 4.36 4.36
200 13.31 3.99 3.63
300 18.86 3.77 3.33
400 23.98 3.60 3.07
500 28.89 3.47 2.95
600 33.79 3.38 2.94
700 38.63 3.31 2.91
726 39.85 3.29 2.81

Table 1. Level 1 Performance Testing Summary

We see that each plan evaluation requires several minutes for 10 sample iterations, an average of
4.36 minutes each for the first 100 improvements and 2.81 for the last 26. The evaluation times
become smaller as the forces are concentrated into fewer roles than the initial flat prior
distribution. The times are also somewhat less for smaller horizon weights (not shown), as
forces are further concentrated into fewer roles. We also see that the time required to fully
optimize the Blue Plan can be very lengthy. In the case of horizon weight = 1, almost 40 hours
were required on the benchmark machine. It should be noted that less time is required for
smaller horizon weights; however, this is not due to efficiency. With lower horizon weights the
relative marginal values (shadow prices) are smaller, causing the plan improvement algorithm to
quit because of a lack of statistically significant differences in role allocations. For example, at
horizon weight = 0, the algorithm quits after about 350 improvement steps. At that point it has
operated on allocations in periods 1, 2, and part of 3. It cannot detect differences in allocations
beyond period 3. At horizon weight = 1, all forces, roles, and periods were operated upon.

Level 2

The following performance tests were performed:

1. Set K = 100 = the number of sample iterations per Level 2 Blue plan. Set the Level 1 Blue

plan to an uninformed (flat) prior distribution for the feasible roles for each force.
2. Vary the number of improving cycles, N, in the Level 2 Optimizer N = {0,10,20,30, etc}.

Record the total time required to create a Level 2 Plan for the set of N.
3. Record the time required to evaluate each given plan with K =10 sample iterations.

At Level 2, we first create a Level 2 Blue plan using the greedy heuristic described previously.
We then evaluate the plan with the Level 2 Stochastic Evaluator. In the tests reported below, the
random number generator was reset before each “Create” and each “Evaluate” so that the results
could be fairly compared.

32

N Create

Time (sec)
Evaluation
Time (sec)

Mean Plan
Value

Std. Dev

0 3.275 408.13 6458.29 206.35
10 51.91 345.58 6465.50 154.60
20 53.30 349.90 6465.50 154.60

Table 2. Level 2 Performance and Face Validity Testing Summary

We see that the plan creation time is relatively quick (a few seconds) if no improving iterations
are made. Adding N=10 improving iterations provides a big jump in run-time to almost a minute.
However, there is no corresponding increase in Evaluation Time. The results above actually
show a small decrease but that is merely random variation. The implications of the Plan Value as
a function of N are discussed in the next subsection below.

Face Validity

Level 1

It is important for plans to reflect varying emphasis on short versus long term considerations. In
the short run, there is no value given to survivability beyond the planning horizon. In this test we
create Level 1 Blue plans using different horizon weights.

1. Vary the horizon weight to place varying emphasis on near versus long term – horizon
weight = {0, .5, 1.0}. Set K=10. Set the planning horizon to 5 periods.

2. For each horizon weight
d. Initialize the Blue Level 1 plan to an uninformed (flat) prior.
e. Create a fully re-optimized Level 1 Blue plan and record the plan result.

horizon weight Counter Air Air Defense Target Reduction AAF Suppression Other

0 2.30 4.90 47.47 4.07 6.27
0.5 0.70 19.90 41.67 1.00 1.73
1 1.20 23.00 39.60 0.20 1.00

Table 3. Total Allocations By Role Over the Planning Horizon

Table 3 summarizes the resulting plans by summing role allocations over all forces and time
periods. As expected, Target Reduction is deemphasized with higher horizon weights. The
other significant change is in Air Defense. At the same time, the other three role allocations
show decreases. That Air Defense increases, rather than say, Counter Air, reflects the objectives
in our model. Both Red and Blue are trying to maximize target value extraction. By assigning
aircraft to Air Defense, Blue can both protect targets and reduce Red forces through attrition.
This improves longer term survivability since Red then has fewer planes with which to attack
Blue forces.

33

When the horizon weight = 0, operating the plan optimization algorithm would again be
expected to increase the discounted net Blue plan value. For higher horizon weights, the
optimizing algorithm should produce less net Blue value over the planning horizon, since
survivability becomes a greater consideration. Figures 6 and 7 show the discounted net Blue
plan value as a function of improving steps for the cases with horizon weight = 0 and 0.50.

Figure 6. Net Blue Plan Value vs. Improving Iterations (Horizon Weight=0)

34

Figure 7. Net Blue Plan Value vs. Improving Iterations (Horizon Weight = .50)

Both cases show a generally steady upward trend in net Blue plan value. With a horizon weight
of zero, the net time discounted value extracted by the final plan is approximately 65% higher
than for the original plan. With a horizon weight of 0.50, the value increases by approximately
50%. However, both cases display regions where the net Blue plan value has a locally
decreasing trend, most markedly when the horizon weight = 0, between 75 and 100 improving
iterations. This is not random variation: the phenomenon was observed for different random
number seeds. We investigated the reallocations occurring at that point and found that forces
were being shifted from Counter Air to Target Reduction. Our current hypothesis on the source
of these dynamics is that they are caused by elements of the current linear programming
formulation, which assume that Blue can always extract target value at an average rate per
aircraft type. Red, on the other hand, has an explicit upper bound on the maximum target value
extraction. A similar constraint on Blue could render a Blue input allocation infeasible, thereby
requiring performance reducing workarounds. So in some situations, Blue Target Reduction
forces will “overrun” red targets – there are not enough Red targets to hit. This over-allocation is
then reflected in the simulation. The planes moved from Counter Air to Target Reduction by the
LP subject all Blue forces to greater attrition. At the same time, the former Counter Air forces
have no targets remaining to hit. Therefore the overall net target extraction is reduced until
additional adjustments are made by the optimizer. Optimizing the plan for a relatively few steps
from a given starting point is not guaranteed to increase value when Red targets are near
exhaustion.

35

Level 2

The Level 2 validation test examined how the net Blue plan values change as a function of the
number of improving iterations using the Level 2 plan creation algorithm. Of course,
improvements are being made simultaneously to both Red and Blue plans; that is, each step
involves first a Blue improvement, and then a Red improvement. After several improving
iterations, it is possible to wind up with a net Blue plan value with little net change. Table 2
above shows the plan values as a function of the number of iterations. Recall that the algorithm
begins with a greedy based initial assignment for each side, and then the improving iterations
operate on the initial plan. The improvements made little difference (and no incremental
improvements after 10 iterations in any test case examined), suggesting that the initial plan may
suffice in many cases, unless a more effective improvement routine can be discovered.

Statistical Comparisons between Planned and “Actual” Conflict

The last set of tests exercise the algorithms as they might be employed during actual use,
applying them to the same simulated conflict used by the internal planning algorithms. (This
highlighted differences due to approximations made by the planner rather than differences due to
mismatches between the simulation and reality.) Figure 8 illustrates the evaluation process.

Figure 8. Model Use during a Planning Cycle

Reality/Simulation

Intelligence
Assessment

Optimize Level 1
Blue Plan

Initial
Plan

Create Level 2 Plan

Implement Plan

New Force/Target
States

END

Stopping
Condition

36

The first test demonstrates how the planner adds value to the plans during the operational
planning cycles. The stopping condition for the conflict is that Blue can no longer extract net
positive value, (e.g., because all Red targets are destroyed). With the horizon weight set to 0 and
the discount factor to 0.80, the optimizer was allowed to make N improving iterations, where N ε
{0, 50, 100}. The initial plan is the uninformed (flat) prior, where forces are allocated evenly
across feasible roles for five periods We assumed perfect intelligence estimates for this
particular test (relaxed in the next test), so the number of samples per evaluation is K= 1. After
each cycle, the plan is updated by discarding the already used first period. Then, if there are
sufficient periods left in the conflict to allow it, we add on a new period to the plan, also set to an
uninformed prior. It could take much iteration to fully optimize a five-period plan. However,
we are only using the first period of the plan at a time, so a full optimization is not necessary. In
practice, a longer plan would be constructed to facilitate integrating air warfare plans with other
military planning outside of the scope of this model. Five runs were made for each value of N,
with results shown in Table 4 below.

N/Cycle Stopping
Point t

Mean
Value
Extracted

Std. Dev.

0 10-15 7002.8 133.70
50 5-6 8884.7 283.54
100 3 9381.3 346.19

Table 4. Value Extraction during a Conflict

Clearly, the plan optimization adds significant additional value from 0 iterations to 50 iterations.
The difference in mean value extracted at 100 versus 50 iterations is also statistically significant
but shows that there are decreasing returns from the additional iterations. (However, the
additional iterations would also help build the plan for future periods, which could be important
for coordinating plans with external units.)

The second test quantifies the performance of the planner with respect to the accuracy of the
intelligence. The previous test assumed that the “Intelligence Estimator” of Figure 6 above was
“omniscient” – it always knew the exact number of Red forces remaining. We now use a “poor”,
systematically biased, Intelligence Estimator. It is given an “assumed detection probability” of
0.90. That is, Blue believes that it can detect 90% of Red’s forces, and scales the result
accordingly. However, the “true detection probability” is actually 50%. Blue will consistently
underestimate Red forces. Both scenarios involve the same number of “actual” Red forces.
Setting the horizon weight to 0.50 as before, the number of samples per evaluation, K, will be 10
with poor intelligence and 1 with perfect intelligence. Table 5 summarizes the results from five
runs of each scenario.

37

Scenario Mean Value Std. Dev.
Omniscient (Perfect Intel) 7572.6 112.81
Poor Intel 8094.5 104.25

Table 5. Discounted Net Blue Values Extracted with Varying Intelligence Quality

The set of runs with poor intelligence extracted significantly higher Blue value than those with
perfect intelligence! This is because, with a horizon weight of .50, we are optimizing a weighted
average of Blue value and survivability. Refer back to Figures 6 and 7. The optimized net Blue
value is lower at a horizon weight of 0.50 versus a horizon weight of 0. Poor intelligence thus
creates a situation similar to having a lower horizon weight. When intelligence is poor (Red is
underestimated), the optimizer believes that survivability considerations are less necessary, since
there are seemingly fewer Red forces to contend with. The resulting plan overemphasizes Target
Reduction, with a higher than anticipated attrition rate.

38

Conclusions

The project successfully demonstrated the use of an integrated planning hierarchy as a
framework for air warfare planning. It showed that linearization of the decision space can be
used to approximate a problem that would otherwise be intractable due to its size and uncertain
dynamics. Within the evaluator, linear programming and simulation operated in tandem over an
extended planning horizon to generate optimized Red responses, assumed outcomes, and relative
marginal force values. Uncertainty was successfully handled with sampling approaches. We
showed how more detailed plans can be automatically generated that were consistent with top
level plans. Last, we demonstrated how the plan optimization algorithms can be embedded in an
operational planning cycle operating over a multi-period conflict, and showed that the
quantitative impacts of poor intelligence and false beliefs about enemy forces can lead to
inappropriate plans. This provides a quantitative foundation for assessing and managing Blue’s
risks by selecting plans that are robust to uncertainties about intelligence, while perhaps reducing
performance on the “best guess” intelligence (in case it proves to be wrong.) Optimally hedging
bets (i.e., current decisions) against imperfect intelligence is an important topic for future
development that can be explored starting from the approach illustrated in Table 5.

With several minutes required to evaluate each plan, fully optimizing a plan over a 5-period
planning horizon required many hours on the benchmark machine. There may be ways to
address this issue through more efficient solution of the nonlinear mathematical programs at the
heart of the planning system and/or by using statistical approximations to multi-period value
functions (Lagoudakis and Parr, 2002). Our approach involved successive solution of linear
programs, requiring (T+1)(T+2)/2 – 1 linear programs for each sample of the Level 1 Stochastic
Evaluator, where T is the number of periods in the planning horizon. The advantage of the linear
programs is their automatic computation of relative marginal resource (force) values in the form
of shadow prices.

Regarding potential future research, the system could be enhanced by making the target values
and capabilities dynamic. The current model is driven by the “extraction” of target value.
Dynamic target values could be generated by a monitoring program that oversees all elements of
a conflict and computes current relative values consistent with an Effects Based Operations
(EBO) approach. It could build on the current capability of the model to represent differing Blue
and Red perceptions of target value. It would also be reasonable to express target values as
probability distributions, given the typical uncertainties associated with targeting and damage
assessments. Further, target capabilities could change to reflect repair of damaged targets.
Lastly, the results of this project also suggest that research into extending the planning process to
the third level (Routes/Engagements) is warranted. Many of the basic elements of the approach -
linearization, sampling, high-level simulations, and rolling forward through a planning horizon -
would likely be very useful in such an extension.

39

References

Anderson, LB and FA Miercort, Combat: A Computer Program to Investigate Aimed Fire
Attrition Equations, Allocation of Fire, and the Calculations of Weapons Scores, IDA Paper P-
2248 (DTIC AD-A213660), 1989.

Bertsekas DP, Tsitsiklis JN, Wu C. Rollout Algorithms for Combinatorial Optimization, Journal
of Heuristics, v.3 n.3, p.245-262, November 1997

Booch G, J Rumbaugh, and I Jacobson. The Unified Modeling Language User Guide. Addison-
Wesley, Boston. 1999.

Carson Y and A Maria. Simulation optimization: Methods and applications. Proceedings of the
1997 Winter Simulation Conference ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L.
Nelson 1997.

Cave, WC and TE Busch. Theoretical underpinnings of predictive battlespace awareness, In
Enabling Technologies for Simulation Science VII, Alex F Sisti and Dawn A Trevisani, (eds.),
Proceedings of SPIE Vol. 5091, 17-26, 2003.

Cruz, JB, MA Simaan, A Gacic, and L Yong. Moving Horizon Nash Strategies for a Military
Air Operation, IEEE Transactions on Aerospace and Electronic Systems, 38(3), 989-999, 2002.

Dippon J. Accelerated randomized stochastic optimization. Ann. Statist., 31(4), 1260-1281,
2003.

Dresher, M. The Mathematics of Games of Strategy: Theory and Applications. Dover Press,
1981.

Dreyfus, HL. What Computers Still Can’t Do. MIT Press, Cambridge, MA, 1994.

Glover, F and M Laguna. Tabu Search. Kluwer, Boston. 1998.

Heise, SA and HS Morse. The DARPA JFACC program: modeling and control of military
operations, In Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 3, 2551-
2555, Sydney, Australia, 12-15 Dec 2000.

Isaacs, R. Differential Games: A Mathematical Theory with Applications to Warfare and
Pursuit, Control and Optimization. John Wiley & Sons. New York. 1965.

Karlin, S. Mathematical Methods and Theory in Games, Programming, and Economics, Dover
Press, Mineola, NY, 1959.

40

Lagoudakis MG and R Parr. Value Function Approximation in Zero-Sum Markov Games.
Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence. Adnan Darwiche
and Nir Friedman (eds.), Alberta, Canada, Aug 1-4 2002.

McEneaney, WM and K Ito. Stochastic Games and Inverse Lyapunov Methods in Air
Operations, In Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 3,
2568-2573, Sydney, Australia, 12-15 Dec 2000.

McEneaney, WM, BG Fitzpatrick and IG Lauko. Stochastic Game Approach to Air Operations.
Paper Submitted to IEEE Trans. Aero. Elec. Systems, 2003. (Currently available at
http://math.ucsd.edu/~wmcenean/pubs/jfaccpaper.pdf)

Mukai, HA, Tanikawa, I. Tunay, A. Ozcan, I. N. Katz, H. Schättler, P. Rinaldi, G. J. Wang, L.
Yang and Y. Sawada. Game Theoretic Linear-Quadratic Method for Air Mission Control, In
Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 3, 2574-2580, Sydney,
Australia, 12-15, Dec 2000.

Popken, D and LA Cox. An Investigation of System Identification Techniques for Simulation
Model Abstraction, Technical Report AFRL-IF-RS-TR-2000-8, Air Force Research Laboratory,
Information Directorate, Rome, NY. 2000.

Taylor, JG. Lanchester Models of Warfare, Volume II, Military Application Section of the
Operations Research Society of America, Alexandria, VA, 1983.

Yost, KA and AR Washburn. The LP/POMPD Marriage: Optimization with Imperfect
Information, Naval Research Logistics Quarterly, 47, 607-619, 2000.

41

Appendix A: AFSimPlan Software

Overview

The AFSimPlan software (see Figure A1) implements the algorithms described in this report.
The algorithms are written in MATLAB, and are accessed from the MATLAB command
window via MATLAB GUI controls as described in the Users Guide below. Since the
MATLAB files are essentially source code, the user can also make revisions to the algorithms or
default parameters with the MATLAB editor. The MATLAB files reside in the C:/Program
Files/Systems View/AFSimPlan/MATLAB directory.

The working data file, planningData.mat, is a MATLAB format compressed data file that
contains the MATLAB objects (see Appendix B: Domain Model) needed to run the algorithms.
It resides in the C:/Program Files/Systems View/AFSimPlan/data directory. MATLAB Load and
Save commands embedded within the application operate on the data file.

The application framework also contains an SQL database (in the same data folder), containing
the same type of data as planningData.mat, but in a relational database format. The SQL
database provides longer term storage of domain data. It also provides a standardized format
more accessible to other external data systems.

MATLABSQL
DataBase

MS
Access

Importer/
Exporter

(C#)

D
o
m

ain
 O

b
jects

Algorithms

MS .NET Framework 1.1MSDE Release 1A

MATLAB 6.5.1 +
Optimization Toolbox

MS Access 2003

planningData.mat

Import/Export Commands

Load/
Save

Figure A1. AFSimPlan Architecture

The user can view and make edits to the SQL data tables through an interface set up in MS
Access. The user needs to navigate to the C:/Program Files/Systems
View/AFSimPlan/data/OpSim-Phase1_SQL.mbd file and open it with MS Access. The first
time the user does this he needs to refresh the links between tables (see Installation Instruction
below).

42

The user will need a software tool to “Attach” and “Detach” the SQL database. The database
must be detached before it can be moved or copied. For convenience, the install will provide a
copy of the freeware, “MSDE Manager®”. The user could also use other tools or even SQL
Server to perform the same function.

The AFSimPlan application also provides a means to import/export between the working file,
planningData.mat, and the SQL files. The application modules that perform this task were
written in C# and are implemented in the MS .NET framework. These modules operate behind
the scenes and are invoked from the MATLAB based GUI controls.

43

User Guide

Level 1 Analysis

This portion of the application is invoked by typing “level1analysis” at the MATLAB command
prompt. The control panel shown in Figure A2 below will be displayed.

Figure A2. Level 1 Controls

1. Initialize Plan (Button). This button invokes the Stochastic Evaluator, providing a set of
sample net Blue values for the current Level 1 Blue plan (role allocation). The function makes
use of both Iterations/Evaluation and Horizon Weight (approx. 4.5 minutes on benchmark
machine for 10 iterations).

44

Iterations/Evaluation (Edit Field). The number of samples desired for each evaluation of
the current plan. Note that each sample requires about 30 seconds on the benchmark
machine.
Horizon Weight (Edit Field). The relative emphasis placed by the plan on short term
versus long term considerations. A (minimum) value of 0 implies short term, while a
value of 1.0 (maximum) implies long term. A short term perspective places no value on
aircraft surviving beyond the planning horizon.

2. Identify/Constrain Improvements:

Display Plan (Button). Displays the results of the last completed plan evaluation (see
Figure A3 below). Two types of information are displayed for each Blue Force Type.
The first, Marginal Value, is the average resource price for that force returned by the
linear programs within the Stochastic Evaluator. The Marginal Value reflects the
expected contribution to the net Blue value obtained by adding an additional unit of that
force. Since the values are specific to roles, the height of the colored band for a role
corresponds to the relative Marginal Value for a given force/role combination. The
second type of information is the Current Allocation. It shows the proportional allocation
to each force/role allocation.

Figure A3. Sample Plan Display

Improvements for a given force type can be visually identified by scanning for large
differences in the height of the role contributions to Marginal Values. If allowed by the

45

Current Allocation, a swap of forces between the roles would lead to an increase in net
Blue value. For example, Blue would be better off if F18C’s were moved from AAF
Suppression to Air Defense. The Current Allocation shows that this swap would be
feasible.

Time Period (Edit Field). This function makes use of the Time Period field to determine
what time period of the plan should be displayed.

Display Value Distribution (Button). This displays the results of the most recent plan
evaluation with respect to the net Blue value obtained (see Figure A4 below). The graph
is the empirical cumulative probability distribution for net Blue value (the probability that
the value is less than or equal to the x coordinate).

Figure A4. Sample Net Blue Value Cumulative Distribution

Search Categories

The user has the option of constraining any search for improvements to the current plan. Only
the Forces, Roles, and Time Periods selected from the list boxes on the left will be searched for
improving reallocations. The user can use SHIFT-left mouse button to select groups of items in
each list box, and CTRL-left mouse button to select multiple non-consecutive items.

3. Improve Plan (Button). This button invokes a “hill climbing” algorithm that finds
improvements to the current Level 1 Blue plan. The algorithm searches over the Search
Categories selected above. If the user makes no selections. the search will be unconstrained.
The search algorithm uses the Stochastic Evaluator to analyze each (re)allocation, thus it utilizes

46

both Iterations/Evaluation and Horizon Weight. The algorithm completes when no further
statistically significant improvements can be found, or once it makes Max Improvements number
of improving reallocations. Since the search process can be lengthy, it is often advisable to limit
the total iterations via Max Improvements. During the search, a display will appear (after the
initial evaluation) showing the current net Blue value as a function of the number of
improvements as in Figure 6 of the Testing section. After every improving step, the computer
will make a “double-beep” sound and the net value graph will update (approximately 4.5 minutes
per improvement on the benchmark machine for 10 iterations/improvement, less for large
numbers of improvements – see Testing section).

Max Improvements (Edit Field) The maximum number of improvements allowed by the
Improve Plan function.

Import (Button). This will first invoke the import/export utility. The utility will update the local
copy of the data (planningData.mat) from the SQL database. The local copy will then be read
into MATLAB. Last, the control panel will be refreshed with the new data. A second MATLAB
command window (minimized) will briefly appear during this process.

Export (Button). First the current data is saved to the local copy of the data (planningData.mat).
Next, the import/export utility will update the SQL database with the output values from the
current analysis (it does not update the basic domain data). A second MATLAB command
window (minimized) will briefly appear during this process.

Save (Local) (Button). This saves the current data in MATLAB to the local copy of the data
(planningData.mat).

Move to Level 2 (Button). Invokes the control panel for Level 2 Analysis

While using the Stochastic Evaluator (Initialize Plan or Improve Plan), the following warning
may appear in the MATLAB command window “Warning: LP failed to converge”. This happens
when the MATLAB provided “linprog,m” optimization routine fails to find a solution, even
though the problem is feasible. The AFSimPlan software handles this by either discarding the
current random sample and getting a new one, or perturbing the inputs and trying again. The
problem with the LP seems to occur about once out of every 50,000 LPs. During a 10 sample
stochastic evaluation, 200 LP’s are run. Therefore, in a long “Improve Plan” run of say, 300
improvements, you have a good chance of seeing one of these warnings.

Level 2 Analysis

This portion of the application is invoked by typing “level2analysis” at the MATLAB command
prompt, or by pressing Move to Level 2 from the Level 1 control panel. The control panel
shown in Figure A5 below will be displayed.

47

Figure A5. Level 2 Controls

The Level 2 Analysis is constrained by the Level 1 Blue plan determined during the Level 1
Analysis above. The first step is to find a conforming Level 2 Plan.

1. Revise Plan (Button). This will create the Level 2 Plan. If no targets are preselected in the list
box above the button, the algorithm will select its own best set of high value targets.

Preselect Blue Target Set (list box). Optionally, select the targets to be hit by clicking on
each target (use CTRL-left mouse button)

Clear All (Button). Clears all selections in the list box

After the plan has been revised, the Evaluation Results will be cleared until a new evaluation
occurs (requires only a few seconds on the benchmark machine).

48

2. Evaluate Plan (Button). This invokes the Level 2 Stochastic Evaluator, providing sample
values for the current period. Upon completion, the results are displayed by target in Evaluation
Results. The function makes use of Num. Iterations.

Num. Iterations – the number of samples taken to make the evaluation

Display Value Distn. (Button) - provides a cumulative probability distribution of the
current net Blue sample values analogous to Figure A4 above.

This evaluation is significantly faster than the similar Level 1 evaluation (approx. 30 seconds on
the benchmark machine for 10 iterations)

Save (local) (Button) - the same operation as in Level 1 Analysis.

Export (Button) - the same operation as in Level 1 Analysis.

49

Appendix B: Domain Model

The domain model diagram shows a UML specification (Booch, et al., 1999) for the domain
objects implemented in MATLAB. The domain objects contain all of the problem domain
related data in a standard format for use by the various algorithms. The implementation makes
use of the “object-oriented” features of MATLAB. The domain model shown below is an image
of the UML specification in the software design tool, Enterprise Architect (filename af.eap). A
free, read-only version of the software, as well as a trial version, is available at the company
website: http://www.sparxsystems.com.au/ .

51

List of Symbols, Abbreviations, and Acronyms

AAF – Anti-Aircraft Forces (e.g. SAM, Patriot)

AFSimPlan – Air Force Simulation Planning -the name of the software implementation of this
research

COA – Course of Action

JFACC (Joint Force Air Component Commander) a DARPA research program

LP – linear program - a mathematical modeling formulation

MATLAB – the scientific programming software language used to implement the algorithms

SAM – surface to air missile

UML – Unified Modeling Language

